
Why does theory
matter in computer 
science?
Rebecca Kempe



How many of you have 
taken COMP 1805?

How many of you liked it?



applications theory

Rebecca



applications theory

RebeccaRebecca??? Rebecca???



applications

theory

actually 
useless

academia

mathematicians

industry

industry research
(where Rebecca 

probably wants to live)

most cs 
students



applications

theory

COMP 2404

COMP 2401

COMP 1405/6

COMP 3804
COMP 2804

COMP 1805

COMP 2406

COMP 3203

COMP 5112 

COMP 3000COMP 2402



Why does theory 
matter in computer 
science?* **

Rebecca Kempe



Why does theory 
matter in computer 
science?* **

Rebecca Kempe
* I am not an expert.

** also, I might “lie” to you.



“lies-to-children”
A lie-to-children is a 
simplified (and maybe also  
technically incorrect) 
explanation of a concept 
used for teaching purposes.

Pictures, for example, are 
useful, but ofted flawed.



WTF is theory???
Part 1:



“theory”
1. a plausible or scientifically acceptable general 

principle or body of principles offered to explain 
phenomena

2. a belief, policy, or procedure proposed or 
followed as the basis of action

3. the analysis of a set of facts in their relation to 
one another

(Merriam-Webster Dictionary)



“theory”
1. a formal set of ideas that is intended to explain 

why something happens or exists

(Oxford Learner’s Dictionary)



Theory gives us language, 
frameworks, and ideas that help us 
sort problems into different types 
and figure out common ways of 
solving them.

(Rebecca’s definition)



abstraction and generalization
• abstraction: stripping away unnecessary 

details so that the bigger picture 
becomes more clear

• generalization: viewing objects in terms 
of ways in which they're the same



abstraction (examples)

machine code → JVM → bytecode → 
→ Java Code → pseudocode

“person”



generalization (examples)

squares

rectangles

quadrilaterals



rectangles

generalization (examples)

squares

quadrilaterals

regular polygons



generalization (examples)
In biology, taxonomy is 
the classification of 
organisms into inclusive 
groupings.

Generalization and 
classification are tightly 
linked concepts.



theory     math!
However, math gives us a precise language 
for describing problems abstractly

note: precise    clear!



where are we going with this?
• we will look at some real-world problems
• we will abstractly describe them using math
• we will look at some solutions
• we will see how generalizing these solutions 

gives us solutions to related problems.



where are we going with this?
• we will look at some real-world problems
• we will abstractly describe them using math
• we will look at some solutions
• we will see how generalizing these solutions 

gives us solutions to related problems.

This is the power of theory!



Some interesting 
“real-world” problems

Part 2:



community detection
• how do we detect groups of web pages 

that are related to each other?
• how do we find the “authoritative” web 

pages?

(Kleinberg, 1999)



topic clustering
• how do we decide which content is similar?
• which groups of related content are the 

most popular?
• this is also known as “large near-clique 

extraction”



correlation mining
• which assets are strongly correlated?
• which assets are most influential on the 

overall market?
• correlation mining is also used in genetics, 

neuroscience, spam detection, etc.



How do we solve 
these problems?* ** 



How do we solve 
these problems?* ** 

* How do we solve them efficiently?

** wait… are these all the same problem?



The Densest Subgraph 
Problem (DSP)

Part 3:

(an abstraction)



graph theory (a crash course)
A graph is a way of representing a set of 
objects (nodes/vertices) and the pairwise 
relationships between them (edges).



graph theory (a crash course)

an edge (a relationship 
between two objects)

nodes, aka a bunch of objects…



graph theory (a crash course)
a b

c d

e

f

g

{f, g}

G = (V, E)
V = {a, b, c, d, e, f, g}
E = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d},
       {c, d}, {d, e}, {f, g}}

(undirected)



graph theory (a crash course)
a b

c d

e

f

g

(f, g)

G = (V, E)
V = {a, b, c, d, e, f, g}
E = {(a, b), (c, a), (d, a), (b, c), (d, b),
       (c, d), (d, e), (f, g)}

(directed)



graph theory (a crash course)
a b

c d

e

f

g

G = (V, E)
order = |V| = 7
size = |E| = 8



graph theory (a crash course)
a b

c d

e

f

g
weights: assign a value to each edge

5

3

6

11

9
6.8

4

5

common when distance is involved!



graph theory (a crash course)
a b

c d

e

f

g
nbr(b) = {a, c, d}
closed/inclusive neighbourhood 
includes b; open does not



graph theory (a crash course)
a b

c d

e

f

g
deg(b) = |nbr(b)| = 3
alternatively, deg(b) is the number 
of edges connected to b



graph theory (a crash course)
a b

c d

e

f

g
S = {a, b, c, d}
G[S] = (S, E(S))
This is the subgraph induced by S

note: G(S) is a 
complete subgraph, 
or a clique



okay, I know that was a lot…
Let’s go back to the original problems.



real-world problems → graphs

community detection

webpages

edge = link between 
two pages



real-world problems → graphs

community detection

webpages

edge = link from page 
a to page b

a b

c



real-world problems → graphs

topic clustering

video content

edge = one person 
watched both videos



real-world problems → graphs

topic clustering

video content

edge = n people 
watched both videos

n



real-world problems → graphs

correlation mining

financial assets

edge = the two assets 
are correlated



real-world problems → graphs

correlation mining

financial assets

edge = the two assets 
are correlated

n = level of correlation



the densest subgraph problem
The density of a graph 
is the number of edges 
it has divided by the 
number of vertices.

We want to find the 
subgraph with the 
highest density.

a b

c d

e g

f

Here, the densest subgraph is induced 
by the set S = {a, b, c, d}.



The DSP, formally.
Given a graph ,,G = (V, E),,, let   S    V. Then 
and

We want to find the subgraph with the optimal density,     :



peeling: an algorithm
a b c ed

f g h ji

(Asahiro et. al, 1996; Charikar, 2000)



peeling: an algorithm
a b c ed

f g h ji

optimal density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 5 1 4 2 3 4 3 3 2

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
16/10 = 1.6

highest density:
16/10 = 1.6



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 4 2 3 4 3 3 2

1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
15/9 = 1.6666667

highest density:
15/9 = 1.6666667



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 3 X 3 4 3 2 2

1 2

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
13/8 = 1.625

highest density:
15/9 = 1.6666667



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 2 X 3 4 3 X 1

1 2 2

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
11/7 = 1.625

highest density:
15/9 = 1.6666667



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 1 X 3 4 3 X X

1 2 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
10/6 = 1.6666667

highest density:
15/9 = 1.6666667



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X X X 3 4 3 X X

1 1 2 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
9/5 = 1.8

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

3 3 X X X X 3 3 X X

1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
6/4 = 1.5

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X 2 X X X X 2 2 X X

3 1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
3/3 = 1

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X 1 1 X X

3 2 1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
1/2 = 0.5

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 0 X X

3 2 1 1 2 3 1 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
0/1 = 0

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
0/0 = undefined

highest density:
9/5 = 1.8



peeling: an algorithm
a b c ed

f g h ji

In this case, the algorithm did produce the expected 
densest subgraph. However, this is not always true…



peeling: summary
• very fast! (runs in linear time)
• usually about 80% good on real world graphs
• used in practice (real applications)
• only guaranteed to be 50% good in worst case

(and there are known bad cases)



peeling: summary
• very fast! (runs in linear time)
• usually about 80% good on real world graphs
• used in practice (real applications)
• only guaranteed to be 50% good in worst case

(and there are known bad cases)

what if we could do better?



iterative peeling

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree

(Boob et. al, 2019)



iterative peeling

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree 

loads

(Boob et. al, 2019)



iterative peeling

a b c d e f g h i j
3 2 1 1 2 3 1 0 2 1

4 5 1 4 2 3 4 4 3 2

7 7 2 5 4 6 5 4 5 3

a b c ed

f g h ji

load

degree 

curr load + deg

(Boob et. al, 2019)

load update

We obtain a new 
peeling order that 
changes with further 
iterations and 
eventually stabilizes.



iterative peeling

a b c d e f g h i j
3 2 1 1 2 3 1 0 2 1

4 5 X 4 2 3 4 4 3 2

7 7 1 5 4 6 5 4 5 3

1

a b c ed

f g h ji

load

degree 

curr load + deg

(Boob et. al, 2019)

load update

We obtain a new 
peeling order that 
changes with further 
iterations and 
eventually stabilizes.



iterative peeling: summary
• Boob et. al experimentally showed that this 

seems to always eventually work!
• can we make our solution as good as we want?
• if so, at what cost?
• can we use this to solve other problems?



(sub, super)modularity 
and set functions

Part 4:

(a digression)



set functions
• the powerset of a set S is the set of all 

subsets of S
• typically denoted          ; we will use
• If                    , then

 



set functions
A set function assigns values to subsets of 
a set. We call the overall set we are 
working with the ground set.

In other words, a set function is a 
function from the powerset of S to the 
real numbers. 



set functions (subtypes)
Let     be a ground set, and let                   .
   is:

• normalized if 
• monotone increasing if 
 



set functions (subtypes)
Let     be a ground set, and let                   .
   is:

• normalized if 
• monotone decreasing if 
 



set functions (subtypes)
Let     be a ground set, and let                   .
   is:

• additive if 
• subadditive if 
 



set functions (subtypes)
Let     be a ground set, and let                   .
   is:

• additive if 
• superadditive if 
 



set functions (marginal values)
Let     be a ground set, and let                   .
The marginal value of adding a new element 
to a set is the gain or loss incurred by adding 
that element to the set. Formally,



interlude: 
some basic economics



submodularity 
Submodularity is characterized by 
diminishing returns. Abstractly:
10 dollars is worth more to a poor person 
than to a millionaire.



modularity 
Modularity is characterized by 
constant returns. Abstractly:
Adding 10 dollars to your bank account 
always increases your purchasing power by 
the same amount.



supermodularity 
Supermodularity is characterized by 
increasing returns. Abstractly:
Adding one brick to a stack of two bricks is 
less useful than adding one brick to a stack 
of one million bricks.



submodularity, formally
A submodular function is a real-valued set 
function characterized by diminishing returns:



supermodularity, formally
A supermodular function is a real-valued set 
function characterized by increasing returns:



modularity, formally
A modular function is both submodular and 
supermodular.

Notice that modular functions are additive!



rewritten using marginal values…
submodular:

supermodular:

modular:



The Densest Supermodular 
Set Problem (DSSP)

Part 5:

(a generalization)



The DSSP, formally.
Given a non-negative supermodular function              ,  ,         
let           . Then,

and we want to find the subset with the optimal density,     :



|E(S)| is supermodular!
a b

c d

e g

f

If we take S = {a, b}, then |E(S)| = 1.



|E(S)| is supermodular!
a b

c d

e g

f

If we take T = {a, b, c}, then |E(T)| = 3. So f(c|S) = 2.



|E(S)| is supermodular!
a b

c d

e g

f

If we take U = {a, b, c, d}, then |E(U)| = 6. So f(d|U) = 3!



The densest subgraph problem 
(DSP) is a special case of the 
densest supermodular set 
problem (DSSP).

(Charikar, Quanrud, Torres, 2022)



If iterative peeling works for all 
supermodular set functions, then 
we can use it to solve more 
problems.

(Charikar, Quanrud, Torres, 2022)



If iterative peeling works for all 
supermodular set functions, then 
perhaps we can use it to solve 
more problems.

Amazingly, this works!

(Charikar, Quanrud, Torres, 2022)



In Conclusion…
Part 6:



Theory helps us solve problems.
• we can describe problems more precisely 

(language)
• we can see how problems are related 

(abstraction)
• we can see how a solution might be reused

(generalization)


	Why does theory matter in computer science?
	How many of you have taken COMP 1805?��How many of you liked it?
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Why does theory matter in computer science?* **
	Why does theory matter in computer science?* **
	“lies-to-children”
	WTF is theory???
	“theory”
	“theory”
	Theory gives us language, frameworks, and ideas that help us sort problems into different types and figure out common ways of solving them.
	abstraction and generalization
	abstraction (examples)
	generalization (examples)
	generalization (examples)
	generalization (examples)
	theory     math!
	where are we going with this?
	where are we going with this?
	Some interesting �“real-world” problems
	community detection
	topic clustering
	correlation mining
	How do we solve these problems?* ** 
	How do we solve these problems?* ** 
	The Densest Subgraph Problem (DSP)
	graph theory (a crash course)
	graph theory (a crash course)
	graph theory (a crash course)
	graph theory (a crash course)
	graph theory (a crash course)
	graph theory (a crash course)
	graph theory (a crash course)
	graph theory (a crash course)
	graph theory (a crash course)
	okay, I know that was a lot…
	real-world problems → graphs
	real-world problems → graphs
	real-world problems → graphs
	real-world problems → graphs
	real-world problems → graphs
	real-world problems → graphs
	the densest subgraph problem
	The DSP, formally.
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: summary
	peeling: summary
	iterative peeling
	iterative peeling
	iterative peeling
	iterative peeling
	iterative peeling: summary
	(sub, super)modularity and set functions
	set functions
	set functions
	set functions (subtypes)
	set functions (subtypes)
	set functions (subtypes)
	set functions (subtypes)
	set functions (marginal values)
	interlude: �some basic economics
	submodularity 
	modularity 
	supermodularity 
	submodularity, formally
	supermodularity, formally
	modularity, formally
	rewritten using marginal values…
	The Densest Supermodular Set Problem (DSSP)
	The DSSP, formally.
	|E(S)| is supermodular!
	|E(S)| is supermodular!
	|E(S)| is supermodular!
	The densest subgraph problem (DSP) is a special case of the densest supermodular set problem (DSSP).��
	If iterative peeling works for all supermodular set functions, then we can use it to solve more problems.
	If iterative peeling works for all supermodular set functions, then perhaps we can use it to solve more problems.��Amazingly, this works!
	In Conclusion…
	Theory helps us solve problems.

