
Supermodularity, Iterative Peeling, and Densest Subgraphs

COMP 5112 Final Project Report

Rebecca Kempe

1 Introduction

1.1 Motivation

Many real-world problems can be formulated as finding clusters in graphs or optimizing density measures
on graphs. These problems come from a range of disciplines, spanning linguistics, finance, neuroscience,
genetics, and more [18]. For example, one version of community detection [13] is the problem of extracting
highly correlated groups of pages from the network structure of a hyperlinked environment. Kleinberg’s work
[13] aims to improve search by identifying authoritative pages within a group of related web pages. Another
problem is large near-clique extraction, where the goal is to cluster content by topic and order the content
clusters by their popularity [18]. Similarly, it is possible to analyze the content of a text based on creating
“text networks” where nodes in the graph are words and they are connected by an edge if they appear within
the same sentence [8, 9]. The groups of words that appear most frequently can be extracted and used to
determine the topic of the text. This is formally known in linguistics as “centering resonance analysis” [9].

These problems, as well as larger classes of similar problems, have motivated the study of graph mining
techniques such as correlation mining, graph clustering, graph compression, and dense subgraph discovery
[14, 18]. In this report, we are most interested in the area of dense subgraph discovery. The canonical problem
is the densest subgraph problem (DSP). The DSP can be stated as follows: given a graph G = (V,E), we

find a subset S ⊆ V that maximizes |E(S)|
|S| , where E(S) is the set of edges with both endpoints in S.

Alternatively, we find S that maximizes the average degree in the induced graph G[S]. In the broadest
sense, the objective is to find a subgraph that maximizes some measure of density. Dense subgraphs can
reveal useful structure and information about a graph, and various related problems or “density” measures
are studied and applied in different areas. The DSP also has many interesting connections to algorithms and
combinatorial optimization. For a recent survey of the DSP and its variants, see [14].

1.2 Prior Works

It is well known that the DSP is polynomial time solvable, and there have been a series of flow-based
exact algorithms for finding the densest subgraph [10, 11, 12, 17]. However, these algorithms have proved
computationally prohibitive in practice, which has motivated the study of approximation algorithms [4, 7].
Charikar [5] designed an LP-based exact algorithm for solving the DSP, used the dual of this LP to show
that the greedy peeling algorithm proposed by Asahiro et al.1 [1] is a 1

2 -approximation for the DSP, and
showed that this algorithm runs in linear time.

Boob et al. extended Charikar’s greedy algorithm to an iterative peeling algorithm they calledGreedy++
[4], which they conjectured is a (1 − ϵ)-approximation to the DSP. They also conjectured that the number
of iterations required for the algorithm to reach this approximation would be T = O

(
1
ϵ2

)
, where T is the

number of iterations. However, they were only able to prove the same bound as Charikar. Chekuri et al. [7]
were able to prove that Greedy++ is a (1−ϵ)-approximation to the DSP using the lens of supermodularity

1This is commonly known as “Charikar’s greedy algorithm” or “Charikar’s peeling algorithm”.
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and a generalized algorithm called SuperGreedy++, but with a much weaker bound on runtime. Proving
a tight bound on the runtime of Greedy++ is an open question.

1.3 Summary

In this report, we primarily study the DSP through the lens of supermodularity, and we closely follow the
work of Chekuri et al. [7]. We state the densest supermodular subset problem (DSSP) and show that the
DSP is a special case of the DSSP. We generalize the 1

2 -approximation bound on greedy peeling, basing the
analysis on a factor cf that depends on the supermodular function f , and discuss the implications of this
bound for more complex supermodular functions. We also outline a proof of the convergence of iterative
peeling for the DSSP, which implies convergence for the DSP as a special case.

2 Preliminaries

Here we review the classes of functions relavant in this report and provide some important results. This
section borrows substantially from the lecture and tutorial notes of Bilmes [2, 3]; other references include
the book chapter by McCormick [16], course notes by Vondrák [19], and the classic paper by Lovász [15].

2.1 Set Functions

A set function f : 2V → R assigns real values to subsets of a ground set V . We say that f is normalized if
f(∅) = 0. We say that f is monotone nondecreasing if A ⊆ B =⇒ f(A) ≤ f(B), and monotone increasing
if A ⊆ B =⇒ f(A) < f(B). Reversing the inequalities, we get monotone nonincreasing and decreasing
functions, respectively.

We say that f is additive if the valuation of the union of any two disjoint sets in V is equal to the sum
of their valuations; that is, f is additive if f(A ∪̇B) = f(A) + f(B). Subadditivity and superadditivity are
defined analogously: f is subadditive if f(A ∪̇B) ≤ f(A)+f(B) and superadditive if f(A ∪̇B) ≥ f(A)+f(B).

Let V be a ground set, and let f : 2V → R. It is often useful to expressed the marginal value under f of
an element to a set, which is the gain or loss incurred by adding that element to the set. Formally, this is
f(S ∪ {v})− f(S), where S ⊊ V, v ̸= S. There are many common ways to notate this; we follow the lead of
[7] and denote the marginal value of v to S by f(v|S) := f(S ∪ {v})− f(S), where S ⊊ V, v ̸= S.

Subsets S ⊆ V can be identified with vectors in {0, 1}V . The characteristic vector of a subset S is given
by 1S ∈ {0, 1}V , where for all v ∈ V , we have that 1S(v) = 1 if v ∈ S and 1S(v) = 0 otherwise. Thus, we
can view a set function f as being a function f : {0, 1}V → R. Any such function can be extended to a
variety of continuous functions f̃ : [0, 1]V → R, where vectors with fractional components are also assigned
valuations. A function f̃ : [0, 1]V → R is called a continuous extension of f if f̃ is defined everywhere on
[0, 1]V and f̃(x) = f(x) for all x ∈ {0, 1}V .

One very important continuous extension is the Lovász extension f̂ : [0, 1]V → R of a set function f .

There are many equivalent definitions of f̂ . The original paper [15] defines it as follows: let x be a vector in
[0, 1]V . Then

f̂(x) =

n∑
i=0

λif(Si),

where ∅ = S0 ⊊ S1 ⊊ S2 ⊊ · · · ⊊ Sn is a chain of sets such that
∑

λi1Si
= x and

∑
λi = 1, λi ≥ 0.

For completeness, we also provide the following definition used in [7]. Given x ∈ [0, 1]V and τ ∈ [0, 1], let

Sτ = {v ∈ V : xv ≥ τ}. Then f̂(x) = Eτ [f(Sτ )], where the randomness is over τ ∈ [0, 1] drawn uniformly at
random.
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2.2 Submodular, Supermodular, and Modular Functions

A submodular function is a real-valued set function characterized by diminishing returns. That is, f : 2V → R
is submodular if

f(v|A) ≥ f(v|B) for all A ⊊ B ⊊ V, where v /∈ B. (1)

Another definition is that a set function f : 2V → R is submodular if

f(A ∪B) + f(A ∩B) ≤ f(A) + f(B), for all A,B ⊆ V. (2)

It is not immediately obvious that these two definitions are equivalent. We provide a proof for completeness,
adapted from [16].

Lemma 2.1. A set function f : 2V → R satisfies (1) if and only if it satisfies (2).

Proof. We first show that (2) implies (1). Take A = S ∪ {v}, B = T , where S ⊊ T ⊊ V and v /∈ T .
Then we obtain f((S ∪ {v}) ∪ T ) + f((S ∪ {v}) ∩ T ) ≤ f(S ∪ {v}) + f(T ). Since S ⊂ T and v /∈ T , we get
f(T ∪ {v}) + f(S) ≤ f(S ∪ {v}) + f(T ) and rearranging, we obtain f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T )
which implies (1), by definition of marginal value. To show that (1) implies (2), we first rewrite (1) as
f(S ∪{v})− f(T ∪{v}) ≥ f(S)− f(T ), where S ⊊ T ⊊ V and v /∈ T , and rewrite (2) as f(A∩B)− f(B) ≤
f(B)− f(A ∪ B). We arbitrarily enumerate the elements of B \ A as e1, e2, . . . , ek and note that for i < k,
[(A∩B)∪ {e1, e2, . . . , ei}] ⊆ [A∪ {e1, e2, . . . , ei}] ⊊ [A∪ {e1, e2, . . . , ei}]∪ {ei+1}. Therefore, the rearranged
(1) implies that f(A ∩B)− f(A) ≤ f((A ∩B) ∪ {e1})− f(A ∪ {e1}). Inductively adding one element from
B \A and continuing to apply (1), we eventually obtain the rearranged (2), as required.

Given any submodular function f , we can form a normalized variant f ′, where f ′(A) = f(A)−f(∅). This
operation does not affect submodularity nor any maxima or minima of the function f . If f is normalized, this
is a generalized notion of subadditivity; if A and B are disjoint, f(A∩B) = 0 and thus we get subadditivity.
Thus in some sense we can say that submodularity is a generalization of subadditivity. For the remainder
of this report, we will assume that all submodular functions are so normalized.

A set function f is supermodular if and only if −f is submodular. Supermodular functions are charac-
terized by increasing returns and in some sense are a generalization of superadditive functions. We also can
obtain definitions of supermodularity by flipping the inequalities in (1) and (2), and the previous statements
in this section can be rephrased for supermodular functions. A function is called modular if it is both sub-
modular and supermodular; in some sense, modular functions can be seen as a discrete analogue of linear
functions. We also have the following lemma that relates modular, submodular, and supermodular functions:

Lemma 2.2. If f is modular and g is submodular, then f − g is supermodular.

Proof. g is submodular, so g(v|A) ≥ g(v|B) (∗). Since f is modular, f(v|A) = f(v|B) and thus we can
subtract f(v|A) from the LHS of (∗) and f(v|B) from the RHS of (∗) without imbalancing the inequality.
Then g(v|A)−f(v|A) ≥ g(v|B)−f(v|B). Multiplying both sides by −1 and rearranging, we obtain f(v|A)−
g(v|A) ≤ f(v|B)− g(v|B) which implies (f − g)(v|A) ≤ (f − g)(v|B), as required.

Recall the Lovász extension f̂ : [0, 1]V → R of f . We have the following important theorem from [15]:

Theorem 2.1. f̂ is convex if and only if f is submodular.

This implies that f̂ is concave if and only if f is supermodular.

3 The DSSP and Related Approximation Algorithms 2

3.1 The DSP is a special case of the DSSP

The densest supermodular subset problem (DSSP) is due to [7] and is stated as follows: given a ground set
V and a normalized, non-negative supermodular function f : 2V → R≥0, we want to find a subset S ⊆ V

2In this section, we will slightly abuse notation and take S−v to mean S \{v}; similarly, we will take S+v to mean S∪{v}.
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that maximizes f(S)
|S| . Alternatively, we are trying to find a subset S∗ with the optimal density, λ∗, where

λ∗ = maxS⊆V
f(S)
|S| . Letting f(S) = |E(S)|, we obtain the DSP. We now show that the DSP is a special case

of the DSSP.

Lemma 3.1. |E(S)| is supermodular.

Proof. We provide two proofs: first, a standard proof, then a sketch of a more direct approach. The more
standard way to see this is that |E(S)| =

∑
v∈S degv(S)− |δ(S)|, where δ(S) is the cut function (edges with

exactly one endpoint in S).
∑

v∈S degv(S) is clearly modular, since the degree of a vertex is independent of
the subgraph it’s contained in, and |δ(S)| is submodular, since increasing the number of vertices decreases
the chances that edges with one endpoint at the new vertex v will not have another endpoint in S. Thus
|E(S)| is the difference of a modular and a submodular function, and is supermodular by Lemma 2.2. More
directly, let f(S) = |E(S)|. Then f(v|S) is the number of vertices in S that share an edge with v. If S = ∅,
there are no vertices in S to share an edge with v. As the size of S grows, the number of vertices that share
an edge with v either grows or remains the same. Thus f(S) = |E(S)| is supermodular by definition.

3.2 Peeling for DSP and Extension to DSSP

Charikar’s greedy algorithm for solving the DSP can be extrapolated to a greedy peeling algorithm for the
DSSP [7]. In this section, we state the algorithm and investigate the associated guarantees.

From [5] we have the following greedy 1
2 -approximation for the DSP:

1. Given a graph, repeatedly remove the vertex with the lowest current degree, as well as all edges attached
to it. (Ties are broken arbitrarily.)

2. From this, we get an ordering v1, v2, . . . , vn of vertices, where vi is the ith vertex in the removal order.

3. We choose the suffix Si = {vi, vi+1, . . . , vn} that induces the subgraph with the highest density λ.

We would like to convert this into an algorithm for the DSSP. Note that the current degree of any vertex
v is the marginal value of v to S − v, where S is the current set of remaining vertices. Thus, we can replace
the step of removing the vertex with the lowest current degree with removing the element v of the current
remaining set S that minimizes f(v|S − v). We then get an ordering v1, v2, . . . , vn of V where vi is the ith
element in the removal order.

Let f : 2V → R≥0 be a normalized, non-negative supermodular function. Let S∗ be an optimal subset

and let λ∗ = f(S∗)
|S∗| . Furthermore, let vj be the first element from the peeling order in the best suffix Sj . We

want to prove a bound on the density of Sj with respect to λ∗. We begin with two useful lemmas.

Lemma 3.2. For each v ∈ S∗, f(v|S∗ − v) ≥ λ∗.

Proof. If |S∗| = 1, then v is the only element in S∗ and f(v|S∗ − v) = f(S∗)− f(∅) = λ∗, by optimality of
S∗. Suppose |S∗| = 2 and assume for contradiction that the claim is false. Then f(v|S∗ − v) < λ∗ which

implies f(S∗) − f(S∗ − v) < f(S∗)
|S∗| . Rearranging, we get f(S∗ − v) > f(S∗)

|S∗| − f(S∗). Dividing by |S∗| − 1

on both sides and rearranging, we get f(S∗−v)
|S∗|−1 > |S∗|f(S∗)−f(S∗)

|S∗|(|S∗|−1) and factoring, we get f(S∗−v)
|S∗|−1 > f(S∗)

|S∗| . But

this implies that the set S∗ − v is a better set than S∗, which is a contradiction, completing the proof.

Lemma 3.3. Let vj be the element in S∗ that is peeled first, and consider the suffix Sj = {vj , . . . , vn}. For
i ≥ j, we have f(vi|Sj − vi) ≥ f(vj |Sj − vj) ≥ f(vj |S∗ − vi) ≥ λ∗.

Proof. We break this into three inequalities. The first inequality, f(vi|Sj − vi) ≥ f(vj |Sj − vj) follows
from the peeling order of the algorithm, since the vertex with the lower marginal value gets peeled first.
The second inequality, f(vj |Sj − vj) ≥ f(vj |S∗ − vi) follows from supermodularity, since S∗ ⊆ Sj . The
last inequality, f(vj |S∗ − vi) ≥ λ∗, follows from Lemma 3.2. Chaining these together, we obtain the full
inequality, completing the proof.
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We now prove a approximation guarantee for peeling based on the parameter cf = maxS⊆V

∑
v∈S f(v|S−v)

f(S) .

From [7], we have the following theorem:

Theorem 3.1. The greedy peeling algorithm has an approximation ratio of at least 1
cf
.

Proof. We want to prove a lower bound on the density of Sj . We note that

f(Sj)

|Sj |
=

f(Sj)

|Sj |
·
∑

v∈Sj
f(v|Sj − v)∑

v∈Sj
f(v|Sj − v)

=
f(Sj)∑

v∈Sj
f(v|Sj − v)

·
∑

v∈Sj
f(v|Sj − v)

|Sj |
.

The fraction on the left is exactly 1
cf
. Also, by Lemma 3.3, f(v|Sj − v) ≥ f(vj |Sj − vj) for any v ∈ Sj .

Therefore we have
f(Sj)

|Sj |
≥ 1

cf
· |Sj |f(vj |Sj − vj)

|Sj |
=

f(vj |Sj − vj)

cf
.

Applying Lemma 3.3 again, we have f(vj |Sj − vj) ≥ λ∗, and so
f(Sj)
|Sj | ≥ λ∗

cf
, completing the proof.

The preceding proofs of Lemma 3.2, Lemma 3.3, and Theorem 3.1 fill in the details of the proof in [7],
which was itself adapted from [12]. The organization of this proof is inspired from the sketch of the proof
given in the seminar talk by Chekuri [6].

The previous theorem means that obtaining an approximation bound on peeling immediately follows
from obtaining (or estimating) an upper bound on cf [7]. In fact, we can directly use this to obtain bounds
on peeling for the DSP and for hypergraphs.

Corollary 3.1. Peeling is a 1
2 -approximation for the DSP and a 1

r -approximation for rank r hypergraphs.

Proof. Recall that cf = maxS⊆V

∑
v∈S f(v|S−v)

f(S) . That is, cf is the ratio of the maximum marginal values of

elements in S divided by the valuation of S, maximized over all S ⊆ V . In graphs, the maximum marginal
value of a vertex in S ⊂ V is its degree in G[S]. But we know that in any graph,

∑
deg(v) = 2|E|. Therefore,

for the DSP, cf = maxS⊆V

∑
v∈S degv(S)

|E(S)| = 2. A similar argument works for hypergraphs; in an r-uniform

hypergraph,
∑

deg(v) = r|E|, so in a general rank r hypergraph cf = maxS⊆V

∑
v∈S degv(S)

|E(S)| ≤ r.

Chekuri et al. further generalize the analysis of greedy peeling for generalizations of hypergraphs called
r-decomposable supermodular functions. This provides an even broader view of how greedy peeling behaves
for general supermodular functions. For more details, see [7].

3.3 Iterative Peeling and Convergence for DSSP

In this section, we discuss the iterative peeling algorithm Greedy++ for the DSP [4], its generalization
SuperGreedy++ for the DSSP [7], and the proof by Chekuri et al. that SuperGreedy++ converges to
a (1− ϵ)-approximation for the DSSP.

Greedy++ is an extension of the Charikar’s peeling algorithm that assigns iteratively assign loads to
each element based on the previous peeling order and peels based on the weighted ordering of the vertices.
After running for T iterations, it outputs a candidate for the best subset [4]. The algorithm can be described
as follows:

1. Input: a graph G and a number of iterations T ;

2. Keep an array of loads for each vertex, all initialized to 0. Let us denote the load of v during iteration
i as loadi(v);

3. In each iteration i, repeatedly find the vertex that minimizes current deg(v) + loadi−1(v) and remove
it (ties are broken arbitrarily);

4. Let loadi(v) = loadi−1(v) + current deg(v) at the time of v’s removal;
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5. Let v1,j , v2,j , . . . , vn,j be the ordering from the sequence of vertex removals during iteration j;

6. After T iterations, we output the suffix over all orderings Si,j = {vi,j , vi+1,j , . . . , vn,j} that induces the
subgraph with the highest density λ.

Notice that the first iteration of this algorithm is identical to the procedure from Charikar’s peeling algorithm.
With each iteration of the algorithm, we obtain a new peeling order based on the previous iterations. This
new order eventually stabilizes, so that typically the best suffix is of the form Si,T = {vi,T , vi+1,T , . . . , vn,T }.

It is also interesting to that the iterative peeling algorithm is in some sense spreading out the load over
the elements to minimize the maximum load over the elements, in some sort of aggregate sense [4, 7]. Since f
is supermodular, as we peel away elements from S, the loads available for remaining elements to redistribute
get smaller, and eventually they should converge to an optimal solution to the load balancing interpretation
of the DSP given by Charikar [4, 5, 7].

In general, instead of sorting vertices by the induced degree of v in G[S] where S ⊆ V , for general
supermodular functions we can take the marginal value of v to the current set, i.e. f(v|S − v). Everything
else about iterative peeling remains the same. This variation of the iterative peeling algorithm for general
supermodular functions was named SuperGreedy++ by Chekuri et al. [7].

Boob et al. ran experiments on several real-world graphs that seemed to indicate thatGreedy++ always
converges to a (1 − ϵ)-approximation for the DSP, and conjectured that T = O( 1

ϵ2 ) iterations are required
[4]. Chekuri et al. proved the convergence of SuperGreedy++ for general supermodular functions:

Theorem 3.2. Let f : 2V → R≥0 be a normalized, non-negative supermodular function and let n = |V |.
SuperGreedy++ outputs a (1− ϵ)-approximation after T = O(

∆f logn
λ∗ϵ2 ) iterations, where λ∗ is the optimal

density and ∆f = maxv∈V f(V )− f(V − v).

This also implicitly provides a proof of the convergence of Greedy++ for the DSP as a special case,
albeit with a much weaker bound than conjectured by Boob et al.

Corollary 3.2. Greedy++ outputs a (1 − ϵ)-approximation after T = O(∆ logn
λ∗ϵ2 ) iterations, where λ∗ is

the optimal density and ∆ is the maximum degree in the graph.

A high level outline of how Chekuri et al. proved the convergence of SuperGreedy++ is as follows:

1. They defined a convex program for the DSSP:

maximize f̂ over x ∈ R≥0 s.t.
∑
v∈V

xv ≤ 1, (3)

where f̂ denotes the Lovász extension of f . They view subsets of V as characteristic vectors 1S . Taking
the Lovász extension and maximizing over the whole vector space turns this maximization problem
into a continuous, rather than a discrete problem, which makes it more tractable. They then show
that this is an exact formulation of the DSSP.

2. Based on this convex program, and connnections between f̂ and the symmetric group of V , they derive
a new LP for the DSSP.

3. Solutions to the dual of this new LP can be rounded to solutions of the DSSP.

4. They describe an algorithm based on the multiplicative weights updates (MWU) framework that gives
solutions to the dual LP.

5. They argue that SuperGreedy++ is a special case of the MWU framework and that it is sort of
approximately rounding the solution provided by MWU. The main argument here is that peeling
orderings from SuperGreedy++ approximately correspond to the reverse of orderings selected in
the MWU algorithm. Therefore, increases in loads in SuperGreedy++ can more or less be mapped
to increases in weights in MWU.

6. The bounds they obtain are by proxy to the MWU algorithm, which they argued that Super-
Greedy++ roughly approximates.
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We note a few interesting things from this proof. First, Charikar’s LP for the DSP [5] is a special case of
(3), which is the convex program for the DSSP described by Chekuri et al. [7]. Secondly, the main argument
here is that SuperGreedy++ is actually a rough approximation for an MWU algorithm that solves the
DSSP, so this proof is somewhat indirect and by proxy. Lastly, since the DSP is a special case of the DSSP,
this is also a proof of convergence of SuperGreedy++, albeit a very indirect one.

4 Conclusion

In this report, we have looked at reasons to study dense subgraph discovery techniques, with a particular
focus on the densest subgraph problem (DSP). We have also covered a few rudiments of the theory of
submodularity (and by extension, supermodularity), and studied the DSP from the purview of the more
generalized densest supermodular subset problem (DSSP). We have shown how approximation algorithms
for the DSP are also approximations for the DSSP and generalized their analysis for all supermodular
functions.

It is interesting to see how taking a more generalized outlook on a problem can provide deeper insights
on the relationships between problems (sometimes showing that they are, in fact, the same problem) and on
the methods used to solve such problems. This is exactly what the work of Chekuri et al. has accomplished:
viewing the DSP through the lens of supermodularity provides deeper insights into how and why the peeling
procedure works and suggests that such a procedure could perhaps be leveraged for other related problems.

It is also of personal interest to note that this work explains why implementations of SuperGreedy++
are experimentally slower on some hypergraphs than others. If we think of graphs as modelling pairwise
correlations between elements, and rank r hypergraphs as modelling correlations between groups with at most
r elements, it becomes clear that the more elements are grouped together in a single “unit of correlation”,
the worse the performance of peeling becomes. This also suggests that as the average cardinality of edges in
a hypergraph decreases, the overall efficiency of SuperGreedy++ for finding dense subgraphs decreases,
and so SuperGreedy++ works best on hypergraphs of low rank. This validates experimental findings
from prior work I have done. While it has been proven that iterative peeling will eventually converge to an
optimal subset for any supermodular function, iterative peeling is perhaps unideal for general r-decomposable
supermodular functions, especially those with a high rank r.

Lastly, I find the proof of convergence of the DSSP to be interesting because it is quite indirect; the
natural phrasing of the DSSP as a convex program is first converted to a linear program, which is then
solved using a MWU algorithm, and then an argument is made that SuperGreedy++ is in fact closely
approximating the MWU algorithm, which is why it converges. The original conjecture of Boob et al. is
still an open question, and in a seminar talk [6] about [7], Chekuri states that he believes that the original
conjecture is perhaps too bold. However, I wonder if a somewhat tighter bound on the number of iterations
could be obtained using a more direct approach to the proof. Perhaps this could be investigated in future
work.
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