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This presentation is primarily based on the work of 
Boob et. al (2019)

Flowless: Extracting Densest Subgraphs 
Without Flow Computations

and the work of Chekuri, Quanrud, Torres (2022)

Densest Subgraph: Supermodularity, 
Iterative Peeling, and Flow



The Densest 
Subgraph Problem (DSP)

Part 1:

(motivation and definitions)



Many real-world problems can be 
formulated as finding “clusters” in 
graphs or optimizing “density 
measures” on graphs.



webpages

edge = link from page 
a to page b

a b

c

community detection

(Kleinberg, 1999)



community detection
• how do we detect groups of web pages 

that are related to each other?
• how do we find the “authoritative” 

web pages?

(Kleinberg, 1999)



video content

edge = n people 
watched both videos

n

topic clustering

(Tsourakakis, Chen, SDM 2021)



• how do we decide which content is similar?
• which groups of related content are the 

most popular?
• “large near-clique extraction” based on 

“thematic coherence”

topic clustering

(Tsourakakis, Chen, SDM 2021)



edge = words said in 
the same sentence

president election

basketball

“text networks”

(Chen, Saad, 2012)
(Corman et. al, 2002)



• which groups of words appear most 
frequently together?

• what is the topic of the text?
• used in linguistics
• “centering resonance analysis”

“text networks”

(Chen, Saad, 2012)
(Corman et. al, 2002)



This has motivated the study of 
associated techniques:
• correlation mining (finance, 

neuroscience, genetics, etc.)

• graph clustering, graph compression

• “dense subgraph discovery” (there are 
multiple variants)



In the broadest sense, the DSP asks us to find the 
subgraph that maximizes some measure of density.

• input: a graph   , a density function 

• output: the subgraph of     with the highest 
density under

Formally, we often find the subset of the vertices 
that induces the densest subgraph.



graph theory (definitions)
f

g

G = (V, E) 
order = |V| = n = 7
size = |E| = m = 8

a b

c d

e



graph theory (definitions)
f

g
deg(b) = |nbr(b)| = 3
alternatively, deg(b) is the number 
of edges connected to b

a b

c d

e



graph theory (definitions)
f

g

S = {a, b, c, d}
E(S) = induced edge set = edges with 
both endpoints in S
G[S] = (S, E(S)) is the subgraph 
induced by S

a b

c d

e



the densest subgraph problem
The density of a graph 
is the number of edges 
it has divided by the 
number of vertices.

We want to find the 
subgraph that induces 
the highest density 
(largest average degree).

a b

c d

e g

f

Here, the densest subgraph is induced 
by the set S = {a, b, c, d}.



The DSP, formally.
Given a graph ,,G = (V, E),,, let   S    V. Then 
and

We want to find the subgraph with the optimal density,     :



Iterative peeling for 
graphs (Greedy++)

Part 2:

(history, algorithms, and associated results)



peeling: an algorithm
• Given a graph, repeatedly remove the vertex with the 

current lowest degree, as well as all edges attached to it. 
• From this, we get an ordering                      of vertices, 

where     is the  th vertex in the removal order. 
• We choose the suffix                                     that 

induces the subgraph with the highest density   . 

(Asahiro et. al, 1996; Charikar, 2000)



peeling: an algorithm
a b c ed

f g h ji



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 5 1 4 2 3 4 3 3 2

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
16/10 = 1.6

highest density:
16/10 = 1.6



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 4 2 3 4 3 3 2

1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
15/9 = 1.6666667

highest density:
15/9 = 1.6666667



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 3 X 3 4 3 2 2

1 2

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
13/8 = 1.625

highest density:
15/9 = 1.6666667



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 2 X 3 4 3 X 1

1 2 2

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
11/7 = 1.625

highest density:
15/9 = 1.6666667



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 1 X 3 4 3 X X

1 2 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
10/6 = 1.6666667

highest density:
15/9 = 1.6666667



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X X X 3 4 3 X X

1 1 2 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
9/5 = 1.8

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

3 3 X X X X 3 3 X X

1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
6/4 = 1.5

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X 2 X X X X 2 2 X X

3 1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
3/3 = 1

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X 1 1 X X

3 2 1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
1/2 = 0.5

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 0 X X

3 2 1 1 2 3 1 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
0/1 = 0

highest density:
9/5 = 1.8



peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree 

optimal density:
9/5 = 1.8

current density:
0/0 = undefined

highest density:
9/5 = 1.8



peeling: an algorithm



peeling: an algorithm



peeling: an algorithm
a b c ed

f g h ji

In this case, the algorithm did produce the expected 
densest subgraph. However, this is not always the case.



peeling: summary
• very fast! (runs in linear time)
• ½-approximation for DSP (Charikar, 2000)
• usually about 80% good on real world graphs
• used in practice (real applications)
• how can we do better?



iterative peeling (Greedy++)
• Decide on a number of iterations    ;
• Keep an array of loads for each vertex, all initialized to 0. 

Let the load of    during iteration    =              ;
• In each iteration   , repeatedly find the vertex that 

minimizes , and remove it;
• Let               =                   + the degree of     when it 

was removed;

(Boob et. al, 2019)



iterative peeling (Greedy++)
• Let                              be the ordering from vertex 

removal during iteration ;
• After     iterations, we choose the suffix over all 

orderings                                               that induces 
the subgraph with the highest density   ;

• Typically, this is a suffix                  . 

(Boob et. al, 2019)



iterative peeling

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree 

final degree

(Boob et. al, 2019)



iterative peeling

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree 

loads

(Boob et. al, 2019)



iterative peeling

a b c d e f g h i j
3 2 1 1 2 3 1 0 2 1

4 5 1 4 2 3 4 4 3 2

7 7 2 5 4 6 5 4 5 3

a b c ed

f g h ji

load

degree 

curr load + deg

(Boob et. al, 2019)

load update

We obtain a new 
peeling order that 
changes with further 
iterations and 
eventually stabilizes.



iterative peeling

a b c d e f g h i j
3 2 1 1 2 3 1 0 2 1

4 5 X 4 2 3 4 4 3 2

7 7 1 5 4 6 5 4 5 3

1

a b c ed

f g h ji

load

degree 

curr load + deg

(Boob et. al, 2019)

load update

We obtain a new 
peeling order that 
changes with further 
iterations and 
eventually stabilizes.



iterative peeling: summary
• Boob et. al experimentally showed that this 

seems to always eventually work!
• Conjecture: this is a          –approximation for 

DSP with            iterations required
• can we use this method to solve other 

problems?



The Densest Supermodular 
Set Problem (DSSP)

Part 3:

(iterative peeling for DSSP; convergence)



set functions
A set function assigns values to subsets of 
a set. We call the overall set we are 
working with the ground set.

In other words, a set function is a 
function from the powerset of S to the 
real numbers. 



set functions (subtypes)
Let     be a ground set, and let                   .
   is:

• normalized if 
• monotone increasing if 
 



set functions (subtypes)
Let     be a ground set, and let                   .
   is:

• normalized if 
• monotone decreasing if 
 



set functions (subtypes)
Let     be a ground set, and let                   .
   is:

• additive if 
• subadditive if 
 



set functions (subtypes)
Let     be a ground set, and let                   .
   is:

• additive if 
• superadditive if 
 



set functions (marginal values)
Let     be a ground set, and let                   .
The marginal value of adding a new element 
to a set is the gain or loss incurred by adding 
that element to the set. Formally,



submodularity, formally
A submodular function is a real-valued set 
function characterized by diminishing returns:



supermodularity, formally
A supermodular function is a real-valued set 
function characterized by increasing returns:



modularity, formally
A modular function is both submodular and 
supermodular.

Notice that modular functions are additive!



rewritten using marginal values…
submodular:

supermodular:

modular:



The densest subgraph problem 
(DSP) is a special case of the 
densest supermodular set 
problem (DSSP).

(Charikar, Quanrud, Torres, 2022)



The DSSP, formally.
Given a non-negative supermodular function              ,  ,         
let           . Then,

and we want to find the subset with the optimal density,     :



|E(S)| is supermodular!
a b

c d

e g

f



|E(S)| is supermodular!
a b

c d

e g

f

If we take S = {a, b}, then |E(S)| = 1.



|E(S)| is supermodular!
a b

c d

e g

f

If we take T = {a, b, c}, then |E(T)| = 3. So f(c|S) = 2.



|E(S)| is supermodular!
a b

c d

e g

f

If we take U = {a, b, c, d}, then |E(U)| = 6. So f(d|U) = 3!



SuperGreedy++, in general
• In general, we can replace the concept of 

current degree with the marginal value of   
to the current set

• Everything else about iterative peeling remains 
exactly the same.

(Charikar, Quanrud, Torres, 2022)



SuperGreedy++: summary
• This is a            – approximation for the DSSP

with                                 iterations required
• Therefore this is also a            – approximation 

for the DSP
•  Iterative peeling works for any set with a 

supermodular function
(Charikar, Quanrud, Torres, 2022)
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