
Densest subgraphs,
iterative peeling, and
supermodularity
November 20, 2024

Rebecca Kempe
COMP 5112 Project Presentation

1. Densest subgraph problem (DSP): motivation and definitions

2. Peeling, iterative peeling for graphs (Greedy++);
associated guarantees

3. Densest supermodular set problem (DSSP)
i. Iterative peeling for DSSP (SuperGreedy++)
ii. Convergence of iterative peeling for DSSP

4. References

Outline

This presentation is primarily based on the work of
Boob et. al (2019)

Flowless: Extracting Densest Subgraphs
Without Flow Computations

and the work of Chekuri, Quanrud, Torres (2022)

Densest Subgraph: Supermodularity,
Iterative Peeling, and Flow

The Densest
Subgraph Problem (DSP)

Part 1:

(motivation and definitions)

Many real-world problems can be
formulated as finding “clusters” in
graphs or optimizing “density
measures” on graphs.

webpages

edge = link from page
a to page b

a b

c

community detection

(Kleinberg, 1999)

community detection
• how do we detect groups of web pages

that are related to each other?
• how do we find the “authoritative”

web pages?

(Kleinberg, 1999)

video content

edge = n people
watched both videos

n

topic clustering

(Tsourakakis, Chen, SDM 2021)

• how do we decide which content is similar?
• which groups of related content are the

most popular?
• “large near-clique extraction” based on

“thematic coherence”

topic clustering

(Tsourakakis, Chen, SDM 2021)

edge = words said in
the same sentence

president election

basketball

“text networks”

(Chen, Saad, 2012)
(Corman et. al, 2002)

• which groups of words appear most
frequently together?

• what is the topic of the text?
• used in linguistics
• “centering resonance analysis”

“text networks”

(Chen, Saad, 2012)
(Corman et. al, 2002)

This has motivated the study of
associated techniques:
• correlation mining (finance,

neuroscience, genetics, etc.)

• graph clustering, graph compression

• “dense subgraph discovery” (there are
multiple variants)

In the broadest sense, the DSP asks us to find the
subgraph that maximizes some measure of density.

• input: a graph , a density function

• output: the subgraph of with the highest
density under

Formally, we often find the subset of the vertices
that induces the densest subgraph.

graph theory (definitions)
f

g

G = (V, E)
order = |V| = n = 7
size = |E| = m = 8

a b

c d

e

graph theory (definitions)
f

g
deg(b) = |nbr(b)| = 3
alternatively, deg(b) is the number
of edges connected to b

a b

c d

e

graph theory (definitions)
f

g

S = {a, b, c, d}
E(S) = induced edge set = edges with
both endpoints in S
G[S] = (S, E(S)) is the subgraph
induced by S

a b

c d

e

the densest subgraph problem
The density of a graph
is the number of edges
it has divided by the
number of vertices.

We want to find the
subgraph that induces
the highest density
(largest average degree).

a b

c d

e g

f

Here, the densest subgraph is induced
by the set S = {a, b, c, d}.

The DSP, formally.
Given a graph ,,G = (V, E),,, let S V. Then
and

We want to find the subgraph with the optimal density, :

Iterative peeling for
graphs (Greedy++)

Part 2:

(history, algorithms, and associated results)

peeling: an algorithm
• Given a graph, repeatedly remove the vertex with the

current lowest degree, as well as all edges attached to it.
• From this, we get an ordering of vertices,

where is the th vertex in the removal order.
• We choose the suffix that

induces the subgraph with the highest density .

(Asahiro et. al, 1996; Charikar, 2000)

peeling: an algorithm
a b c ed

f g h ji

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 5 1 4 2 3 4 3 3 2

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
16/10 = 1.6

highest density:
16/10 = 1.6

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 4 2 3 4 3 3 2

1

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
15/9 = 1.6666667

highest density:
15/9 = 1.6666667

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 3 X 3 4 3 2 2

1 2

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
13/8 = 1.625

highest density:
15/9 = 1.6666667

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 2 X 3 4 3 X 1

1 2 2

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
11/7 = 1.625

highest density:
15/9 = 1.6666667

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X 1 X 3 4 3 X X

1 2 2 1

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
10/6 = 1.6666667

highest density:
15/9 = 1.6666667

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

4 4 X X X 3 4 3 X X

1 1 2 2 1

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
9/5 = 1.8

highest density:
9/5 = 1.8

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

3 3 X X X X 3 3 X X

1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
6/4 = 1.5

highest density:
9/5 = 1.8

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X 2 X X X X 2 2 X X

3 1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
3/3 = 1

highest density:
9/5 = 1.8

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X 1 1 X X

3 2 1 1 2 3 2 1

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
1/2 = 0.5

highest density:
9/5 = 1.8

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 0 X X

3 2 1 1 2 3 1 2 1

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
0/1 = 0

highest density:
9/5 = 1.8

peeling: an algorithm

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree

final degree

optimal density:
9/5 = 1.8

current density:
0/0 = undefined

highest density:
9/5 = 1.8

peeling: an algorithm

peeling: an algorithm

peeling: an algorithm
a b c ed

f g h ji

In this case, the algorithm did produce the expected
densest subgraph. However, this is not always the case.

peeling: summary
• very fast! (runs in linear time)
• ½-approximation for DSP (Charikar, 2000)
• usually about 80% good on real world graphs
• used in practice (real applications)
• how can we do better?

iterative peeling (Greedy++)
• Decide on a number of iterations ;
• Keep an array of loads for each vertex, all initialized to 0.

Let the load of during iteration = ;
• In each iteration , repeatedly find the vertex that

minimizes , and remove it;
• Let = + the degree of when it

was removed;

(Boob et. al, 2019)

iterative peeling (Greedy++)
• Let be the ordering from vertex

removal during iteration ;
• After iterations, we choose the suffix over all

orderings that induces
the subgraph with the highest density ;

• Typically, this is a suffix .

(Boob et. al, 2019)

iterative peeling

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree

final degree

(Boob et. al, 2019)

iterative peeling

a b c d e f g h i j
4 5 1 4 2 3 4 4 3 2

X X X X X X X 1 X X

3 2 1 1 2 3 1 0 2 1

a b c ed

f g h ji

degree

curr. degree

loads

(Boob et. al, 2019)

iterative peeling

a b c d e f g h i j
3 2 1 1 2 3 1 0 2 1

4 5 1 4 2 3 4 4 3 2

7 7 2 5 4 6 5 4 5 3

a b c ed

f g h ji

load

degree

curr load + deg

(Boob et. al, 2019)

load update

We obtain a new
peeling order that
changes with further
iterations and
eventually stabilizes.

iterative peeling

a b c d e f g h i j
3 2 1 1 2 3 1 0 2 1

4 5 X 4 2 3 4 4 3 2

7 7 1 5 4 6 5 4 5 3

1

a b c ed

f g h ji

load

degree

curr load + deg

(Boob et. al, 2019)

load update

We obtain a new
peeling order that
changes with further
iterations and
eventually stabilizes.

iterative peeling: summary
• Boob et. al experimentally showed that this

seems to always eventually work!
• Conjecture: this is a –approximation for

DSP with iterations required
• can we use this method to solve other

problems?

The Densest Supermodular
Set Problem (DSSP)

Part 3:

(iterative peeling for DSSP; convergence)

set functions
A set function assigns values to subsets of
a set. We call the overall set we are
working with the ground set.

In other words, a set function is a
function from the powerset of S to the
real numbers.

set functions (subtypes)
Let be a ground set, and let .
 is:

• normalized if
• monotone increasing if

set functions (subtypes)
Let be a ground set, and let .
 is:

• normalized if
• monotone decreasing if

set functions (subtypes)
Let be a ground set, and let .
 is:

• additive if
• subadditive if

set functions (subtypes)
Let be a ground set, and let .
 is:

• additive if
• superadditive if

set functions (marginal values)
Let be a ground set, and let .
The marginal value of adding a new element
to a set is the gain or loss incurred by adding
that element to the set. Formally,

submodularity, formally
A submodular function is a real-valued set
function characterized by diminishing returns:

supermodularity, formally
A supermodular function is a real-valued set
function characterized by increasing returns:

modularity, formally
A modular function is both submodular and
supermodular.

Notice that modular functions are additive!

rewritten using marginal values…
submodular:

supermodular:

modular:

The densest subgraph problem
(DSP) is a special case of the
densest supermodular set
problem (DSSP).

(Charikar, Quanrud, Torres, 2022)

The DSSP, formally.
Given a non-negative supermodular function , ,
let . Then,

and we want to find the subset with the optimal density, :

|E(S)| is supermodular!
a b

c d

e g

f

|E(S)| is supermodular!
a b

c d

e g

f

If we take S = {a, b}, then |E(S)| = 1.

|E(S)| is supermodular!
a b

c d

e g

f

If we take T = {a, b, c}, then |E(T)| = 3. So f(c|S) = 2.

|E(S)| is supermodular!
a b

c d

e g

f

If we take U = {a, b, c, d}, then |E(U)| = 6. So f(d|U) = 3!

SuperGreedy++, in general
• In general, we can replace the concept of

current degree with the marginal value of
to the current set

• Everything else about iterative peeling remains
exactly the same.

(Charikar, Quanrud, Torres, 2022)

SuperGreedy++: summary
• This is a – approximation for the DSSP

with iterations required
• Therefore this is also a – approximation

for the DSP
• Iterative peeling works for any set with a

supermodular function
(Charikar, Quanrud, Torres, 2022)

Main References
László Lovász. “Submodular Functions and Convexity”. (1983)

Moses Charikar. “Greedy Approximation Algorithms for Finding Dense
Components in a Graph”. (2000)

Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos
Tsourakakis, Di Wang, and Junxing Wang. “Flowless: Extracting Densest
Subgraphs Without Flow Computations”. (2019)

Chandra Chekuri, Kent Quanrud, Manuel R. Torres. “Densest Subgraph:
Supermodularity, Iterative Peeling, and Flow”. (2022)

	Densest subgraphs, iterative peeling, and�supermodularity
	Outline
	This presentation is primarily based on the work of �Boob et. al (2019)� �Flowless: Extracting Densest Subgraphs Without Flow Computations��and the work of Chekuri, Quanrud, Torres (2022)��Densest Subgraph: Supermodularity, Iterative Peeling, and Flow
	The Densest �Subgraph Problem (DSP)
	Many real-world problems can be formulated as finding “clusters” in graphs or optimizing “density measures” on graphs.
	community detection
	community detection
	topic clustering
	topic clustering
	“text networks”
	“text networks”
	This has motivated the study of associated techniques:
	In the broadest sense, the DSP asks us to find the subgraph that maximizes some measure of density.
	graph theory (definitions)
	graph theory (definitions)
	graph theory (definitions)
	the densest subgraph problem
	The DSP, formally.
	Iterative peeling for graphs (Greedy++)
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: an algorithm
	peeling: summary
	iterative peeling (Greedy++)
	iterative peeling (Greedy++)
	iterative peeling
	iterative peeling
	iterative peeling
	iterative peeling
	iterative peeling: summary
	The Densest Supermodular Set Problem (DSSP)
	set functions
	set functions (subtypes)
	set functions (subtypes)
	set functions (subtypes)
	set functions (subtypes)
	set functions (marginal values)
	submodularity, formally
	supermodularity, formally
	modularity, formally
	rewritten using marginal values…
	The densest subgraph problem (DSP) is a special case of the densest supermodular set problem (DSSP).��
	The DSSP, formally.
	|E(S)| is supermodular!
	|E(S)| is supermodular!
	|E(S)| is supermodular!
	|E(S)| is supermodular!
	SuperGreedy++, in general
	SuperGreedy++: summary
	Main References

