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1 Introduction

1.1 What is Quantum Advantage?

Quantum computing is an emerging paradigm of computation that significantly rose in interest in the 1980s
and 1990s. In 1982, Richard Feynmann gave a talk in which he reasoned that classical computers could not
efficiently perform calculations describing quantum phenomena, and suggested that building computers that
performed computations based on quantum mechanics could perhaps avoid those problems. While the idea
of merging quantum mechanics and information theory had been around since the 1970s, Feynmann’s talk
increased interest and attention to these ideas [8, 16]. In 1994, Peter Shor discovered a quantum algorithm
that could efficiently factor large integers into primes, and Lov Grover showed that search problems could
be sped up on a quantum computer in 1995 [16]. Both of these innovations brought a dramatic increase
in interest to the field, and the implications of Shor’s algorithm on the security of online transactions and
encrypted communications (or possibly, future lack thereof) are wide-reaching [8, 16].

The race towards advancements in quantum technologies is spurred forward by a hope that they will engender
massive real-world increases in computational power. One driving factor is the fact that Moore’s law, which
(roughly) states that the power of classical computers should double about every two years [16], is slowly
becoming obsolete due to physical limitations and costs—in fact, some experts consider Moore’s law to
already be obsolete [17, 20, 21]. The hope is that moving to a new paradigm of computing will enable the
progression of advancements in the speed of computation to continue.

Two terms that are often thrown around while discussing advancements in quantum technology are “quantum
advantage” and “quantum supremacy.” Like many terms associated with emerging technologies, these
are ill-defined buzzwords that have varying meanings in different contexts, and which are sometimes used
interchangeably. A variety of definitions can be found in [6, 7, 12, 14, 18, 19]. The most common definitions
used are that quantum supremacy is an experimental demonstration of a quantum computer solving a
problem that is intractible for any classical computer, whereas quantum advantage would require such a
demonstration to involve solving a real-world problem that is relevant for commercial purposes. Recently,
the Google Quantum AI lab developed a quantum chip called Willow that they claim will be able to achieve
real quantum advantage thanks to advances in error correction [9, 15].

The paper this report discusses, titled “Quantum Advantage with Shallow Circuits” [3], instead uses “quan-
tum advantage” to mean a case of a specific subset of quantum algorithms being able to solve problems that
the equivalent class of classical algorithms cannot. In contrast to the more common definitions of quan-
tum advantage discussed above, no real-world, commercially applicable gains are being claimed, and the
advantage demonstrated is highly specific and does not apply to the broader case of quantum vs classical
computation in general. However, the result is important because it was one of the first major steps to
showing that quantum computers may be able to solve more problems than classical computers.
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Figure 2.1: A classical circuit that computes x1 ⊕ x2.

1.2 Overview

The remainder of this report will introduce the concepts necessary to understand the results of Bravyi et
al. [3]. Their landmark paper proved that constant-depth quantum circuits composed of one- and two-
qubit gates (also known as shallow quantum circuits, or SQCs) can solve a computational problem that
constant-depth circuits with bounded fan-in gates cannot solve. Constant-depth circuits with bounded fan-in
gates are the class of circuits that solve “problems that can be solved on a parallel machine in a constant
time independent of the problem size using a polynomial number of processors” [3]. These problems are
exactly problems in the class NC0 [1]. For brevity, we will abuse terminology and refer to constant-depth
circuits with bounded fan-in gates as “NC0 circuits”. The main result of [3] is that SQCs can solve the 2D
Hidden Linear Function Problem (2D HLFP) whereas NC0 circuits cannot. In fact, Bravyi et al. prove the
following theorem, which states that circuits that solve the 2D HLFP must have logarithmic depth.

Theorem 1.1. A classical probabilistic circuit with fan-in at most k which solves all size-n instances of the
2D Hidden Linear Function problem with probability greater than 7

8 must have depth at least logn
8 log k .

In the first half of the report, we discuss preliminaries such as classical circuits, quantum circuits, and the
relationship between parallelism, NC0 circuits, and SQCs. In the second half of this report, we discuss
hidden linear function problems, introduce the 2D HLFP, and give some insight as to why the 2D HLFP
cannot be solved by NC0 circuits. Finally, we summarize the insights from [3] and point to further reading.

2 Classical Circuits

A circuit (a.k.a. boolean circuit, classical circuit) is a model for non-uniform computation. In contrast to
the Turing Machine model, which is uniform, meaning that the same Turing Machine can be used for every
input size, circuits require a different algorithm for each size of input. Circuits compute Boolean functions
f : {0, 1}n → {0, 1}, and can be viewed as extensions of boolean formulas. One motivation for studying
circuits is the hope that they could make it easier to prove P ̸= NP; however, this has yet to pan out [1].
An example of a classical circuit can be seen in Figure 2.1. We now give several definitions.

Definition 2.1 (Circuit). A classical circuit is a directed acyclic graph with n source nodes and one sink
node. The source nodes are inputs, the sink node is the output, and the other (internal) nodes are gates
[1]. There are also variations of circuits which compute functions f : {0, 1}m → {0, 1}n; these circuits have
multiple output nodes [3].

Definition 2.2 (Gate, Fan-in, Fan-out). A gate is an internal node in a circuit. Every gate computes
a specified boolean function f : {0, 1}k → {0, 1}, where k is the in-degree or “fan-in” of the gate. The
“fan-out”, or out-degree of a gate corresponds to the number of times its output is copied and used by the
rest of the circuit. The typical gate set for classical circuits consists of AND, OR, and NOT gates, though
other gates may also be used [1, 3].
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Definition 2.3 (Size, Depth). The size of a circuit is the number of gates in the circuit. The depth of a
circuit is the number of gates in the longest path from an input to the output in its graph representation [1].

Definition 2.4 (Probabilistic Circuit). Let C be a circuit with input x ∈ {0, 1}m and output z = f(x) ∈
{0, 1}n. A probabilistic circuit is a circuit in which some of the input bits are chosen at random. That is,
x = x′r where r ∈ {0, 1}l is a string drawn from an arbitrary random distribution and x′ ∈ {0, 1}m−l [3].

Definition 2.5 (Correlated Variables). Let xi be the ith variable (bit) of the input string, zj be the jth
variable of the output string, and let f : {0, 1}m → {0, 1}n be the function computed by the circuit. Two
variables xi, zj are said to be correlated if there exists a string y ∈ {0, 1}m such that flipping the ith bit of
y flips the jth bit of f(y). Note that this is only possible if the circuit contains a path from xi to zj . [3]

Definition 2.6 (Lightcone). The lightcone of an input bit xi is the set of all output bits correlated with
xi. Similarly, the lightcone of an output bit zj is the set of all input bits correlated with zj .

Definition 2.7 (NC0 circuit). A circuit computes problems belonging to the class NC0 if it (1) has
constant depth and (2) all gates in the circuit have fan-in at most k = O(1). These are also known as
constant-depth circuits with bounded fan-in. For brevity, we will refer to these as NC0 circuits.

3 Quantum Circuits

3.1 Preliminaries: States, Computations and Quantum Bits

In contrast to classical computers, which perform computations by flipping switches between an “off state”
(the “0” bit) and an “on state” (the “1” bit), quantum computers perform computations by manipulating
quantum mechanical systems. In short, the input to the computation is a prepared initial quantum state (or
a series of linked initial quantum states), the operations are changes to the quantum system, and the output
is the state obtained after the final outcome of the quantum computations is measured.

Quantum mechanical systems are modelled by Hilbert spaces; when it comes to quantum computing, we
can usually assume that these are finite-dimensional complex vector spaces. A state in a quantum system
is modelled by a unit vector. A basis for the system, known as the measurement basis, defines the set
of states that can be input to the computation or obtained as output variables post-computation. While
intermediate states are linear combinations of measurement basis states, measurement causes each variable
to probabilistically collapse down to a single basis state.

Quantum bits, or qubits, are the quantum analogue of classical bits. They are represented by unit vectors,
or states, in a 2D complex vector space. The measurement basis, denoted {|0⟩, |1⟩}, is roughly analogous to
the pair of classical bits {0, 1}. All qubits are of the form

α|0⟩+ β|1⟩, |α|2 + |β|2 = 1,

where α and β are complex numbers. The probability of measuring |0⟩ = |α|2, and the probability of
measuring |1⟩ = |β|2.

3.2 Gates, Universal Gate Sets, and Circuits

In this section, we mainly consider one- and two-qubit gates.

Definition 3.1 (One-Qubit Gate). A single qubit quantum gate is a unitary operator U on a 2D complex
vector space. Let |ϕ⟩ be an arbitrary qubit. Then the gate U performs the action |ϕ⟩ → U |ϕ⟩.

Definition 3.2 (Controlled Qubit Gate). A controlled quantum gate is a two-qubit gate that has a
target qubit as a well as a control qubit. The gate performs a unitary action on the target qubit based on
the value of the control qubit. These gates are typically denoted CU . Let |ϕ⟩|ψ⟩ be an arbitrary two-qubit
state, where |ϕ⟩ is the control qubit. Then the gate CU performs the action |ϕ⟩|ψ⟩ → |ϕ⟩Uϕ|ψ⟩.
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Figure 3.1: A shallow quantum circuit. Green gates are one-qubit gates, orange
gates are arbitrary controlled gates, and all other gates are CNOT gates.

In classical computing, all possible operations can be carried out using the set of AND, OR, and NOT gates.
This is called a universal gate set. In quantum computing, we have a theorem that states that any unitary
gate can be arbitrarily approximated by a finite universal gate set, where all gates are either one-qubit gates
or controlled qubit gates [16]. The authors of [3] use a modified Clifford+T gate set, namely the gates

H =
1√
2

(
1 1
1 1

)
, S =

(
1 0
0 −i

)
, T =

(
1 0
0 eiπ/4

)
,

and the controlled gate CZ where X, Y , and Z are Pauli matrices.

Definition 3.3 (Quantum Circuit, Depth, Shallow Quantum Circuit). A quantum circuit of depth
d consists of a sequence of d layers of one- and two-qubit gates, where each layer of gates consist only of gates
which do not share qubits [3]. The depth can also be viewed as the number of timesteps of gates, where two
gates can be simultaneously evaluated if their inputs are disjoint and neither gate relies on the other already
having been evaluated. If the depth d is constant w.r.t. the input size (d = k = O(1)), then the circuit is
called a shallow quantum circuit (SQC). An example of an SQC can be seen in Figure 3.1.

3.3 Parallelism and Shallow Quantum Circuits

Bravyi et al. chose to explore SQCs in their work due to the importance of parallelism in both classical and
quantum computing. In classical contexts, having a parallel algorithm to solve a problem is highly desirable
because it allows us to take advantage of the multiple cores available in modern processors. In quantum
contexts, parallelism is also of immense importance due to “coherence time”: that is, the amount of time a
quantum computation can run without error correction before so much noise builds up that the results are
unusable. Quantum computations have constant coherence time, and so in contexts where error-correction
is unavailable, it makes sense to parallelize the computation as much as possible [3]. SQCs and NC0 circuits
are natural analogues of each other, which is why it makes sense to compare them.

4 Hidden Linear Function Problems

4.1 Hiding a Linear Function Inside an Oracle

The Hidden Linear Function problem described by Bravyi et al. is a variation of the Bernstein-Vazirani
problem, which we will introduce first. In this problem, we “hide a linear function inside an oracle” (we will
see what this means shortly), and the goal is to retrieve the value of a secret string z which will help us fully
define the function [3].

Setting this up, we have a boolean function l : {0, 1}n → {0, 1} parameterized by a secret bit string z ∈
{0, 1}n, such that for x ∈ {0, 1}n, we have l(x) = zTx mod 2. The goal is to recover the value of z so
that we can explicitly specify the function l(x). We have access to an oracle (or black box) which, given a
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Figure 4.1: A labelled subgraph of a 3× 3 grid graph.

value x, will return the value l(x). Bernstein and Vazirani showed that by using a unitary operator which
performs the action |x⟩ → Ul|x⟩, where Ul|x⟩ = (−1)l(x)|x⟩, only one query to the oracle is required, whereas
a classical algorithm would require n queries to obtain z.

Bravyi et al. were inspired by this problem, but wanted to move away from the oracular model. This is
because in this problem, the quantum improvement is with respect to the oracle, but such improvements
do not always correspond to real-world improvements. Instead, Bravyi et al. hide a linear boolean function
inside a Z4-valued quadratic form.

4.2 Hiding a Linear Function Inside a Quadratic Form

In this section, we use the alternative formulation of the Hidden Linear Function Problem (HLFP) given in
the seminar by Bravyi [2].

We suppose that A is a binary symmetric matrix of size n, and we consider the nullspace Ker(A) of A, that
is, the set of binary vectors x such that Ax = 0 (mod 2). We now define the quadratic form

q(x) = xTAx (mod 4).

Since x is binary, the restriction of q onto Ker(A), where we restrict ourselves to inputs from Ker(A), can be
non-zero. (This is in contrast to the real case, where the restriction is a zero function.) What’s more, this
restriction is a linear function, up to a factor of two: that is, q(x) = 2 · l(x), for some l : {0, 1}n → {0, 1}.
Then this can be rewritten as

q(x) = 2zTx (mod 4),

where z is a secret bit string (in this case, it is non-unique) that parameterizes the function.

Thus, the input to the HLFP is a binary symmetric matrix A, and the output is a bit string z such that

q(x) = 2zTx (mod 4) for all x ∈ Ker(A).

4.3 2D Hidden Linear Function Problem

The 2D HFLP restricts A to be the adjacency matrix of a subgraph of an n× n grid graph, with the caveat
that an edge can be included in the subgraph despite its endpoint vertices not being included. This means
that for an n× n grid graph, we obtain an n2 × n2 matrix.

Consider the 3× 3 grid graph shown in Figure 4.1. The pink lines are edges included in the subgraph, and
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the orange dots are vertices included in the subgraph. Then the matrix we obtain as input is the 9×9 matrix

A =



0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 1 0 1 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0


which is binary and symmetric, as required. Bravyi et al. showed that there is an SQC which can solve all
instances of the 2D HLFP; however, there is no NC0 circuit which can solve all instances of the 2D HLFP.

5 Quantum Nonlocality and Quantum Advantage

The reason why 2D HLFP cannot be solved by any NC0 circuit is due to the strong locality of NC0 circuits.
NC0 circuits compute local functions: that is, each output bit in an NC0 circuit can only be correlated with
a constant number of input bits. More formally, let C be a classical circuit and let LC(zi) be the lightcone
of an output variable zi. If C has depth d and fan-in bounded by k ∈ O(1), then for all i,

|LC(zi)| ≤ kd.

However, the input-output correlations of the 2D HLFP exhibit what Bravyi et al. refer to as cycle relations:
properties very similar to the GHZ relation, which is a relationship between three highly entangled quantum
states. SQCs are able to solve this problem due to quantum nonlocality, which states that the measurement
statistics of entangled quantum states cannot be reproduced by local hidden variable models [2, 3]. However,
this means that local functions cannot possibly be used to solve instances of these problems.

6 Conclusion

In summary, Bravyi et al. showed that there exists a problem solvable by shallow quantum circuits (SQCs)
that is unsolvable by constant depth circuits with unbounded fan-in (NC0 circuits). This problem is known
as the 2D Hidden Linear Function problem, and a circuit which solves this problem must have depth at least
logarithmic in n (See Theorem 1.1).

There has since been other work investigating the advantage given by SQCs. We invite the reader to refer
to [4, 5, 10, 11, 13] for more recent results surrounding problems solvable by SQCs. There is evidence that
suggests that SQCs are more powerful than other classes of circuits in NC, for example, circuits in NC1

and beyond [10]. Such results are more likely to translate to a true real-world quantum advantage when it
comes to parallel algorithms.
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